燃煤电厂超低排放改造后烟道氯化铵结晶原因分
近年来,随着我国经济的高速发展,环境问题日益突出,其中化石燃料的燃烧和利用是造成环境污染的主要原因。作为我国的煤炭消耗大户,燃煤电厂要在2020年前全面实施超低排放和节能改造,东、中部地区要提前至2017年和2018年达标。超低排放改造后的燃煤电厂,在运行过程中出现了一系列新的问题。例如由于出口氮氧化物排放质量浓度限值的降低,对喷氨系统的运行状态提出了更高的要求,也增加了后续设备稳定运行的难度。
部分燃煤电厂在超低排放改造后的停机检查中发现,选择性催化还原(SCR)脱硝系统之后除空气预热器(空预器)、除尘器等设备发生硫酸氢铵的板结与堵塞外,在除尘器、引风机、脱硫系统入口等烟道处还发生了大量氯化铵晶体的沉积与板结,脱硝系统后续设备的运行状况较超低排放改造前严重恶化。本文从燃煤电厂烟道内氯化铵结晶的实际情况出发,通过实验室化验、结晶机理研究、现场运行控制等对氯化铵结晶问题进行全面分析与研究,为燃煤电厂的安全稳定运行提供理论依据。
1氯化铵结晶情况
图1为白色结晶物照片。该结晶物为长度3mm左右的细长杆状多面体晶体结构,多层晶体密集堆积并板结在一起,厚度可达10mm以上。在除尘器净烟室和出口烟道附近存在大量白色结晶物,说明有相当一部分结晶物通过滤袋之后析出并沉积下来,导致除尘器对结晶物的去除效果下降。图1b)中引风机轮毅表面的结晶物底层呈黄色,并附着一层黑色腐蚀产物,表明结晶物对烟道表面产生了一定的腐蚀。
图1白色结晶物照片
2氯化铵结晶实验室分析
2.1引风机轮毅表面结晶物
取某电厂引风机轮毅表面的结晶物进行实验室分析,结果见表1。由表1可见:引风机轮毅表面结晶物中91.10%均为氯化铵;结晶物450℃下的灼烧减量高达99.49%,而900℃下灼烧减量仅增加0.20%。根据DL/T1151.22-2012[6]对引风机轮毅表面结晶物900℃灼烧产物进行分析,结果见表2。由表2可以看出:结晶物灼烧产物的主要成分为三氧化二铁,占67.10%,其主要是引风机轮毅表面的腐蚀产物;灼烧产物中含有二氧化硅等成分,表明结晶物中含有部分烟尘等烟气颗粒物。
表1引风机轮毅表面结晶物主要成分
表2引风机轮毅表面结晶物900℃灼烧产物主要成分
2.2袋式除尘器净烟室壁面结晶物
取另一家燃煤电厂袋式除尘器净烟室壁面结晶物进行成分分析,结果见表3。由表3可见:袋式除尘器净烟室壁面结晶物中氯化铵的质量分数为95.56%;结晶物在450℃时的灼烧减量高达99.05%。
表3袋式除尘器净烟室壁面结晶物主要成分
根据DL/T1151.22-2012对袋式除尘器净烟室壁面结晶物在900℃下的灼烧产物进行成分分析,结果见表4。由表4可以看出,结晶物灼烧产物主要成分为二氧化硅,占53.27%。可见,900℃下结晶物灼烧产物主要成分为烟尘等烟气颗粒物。
表4袋式除尘器净烟室壁面结晶物900℃灼烧产物主要成分
由实验室分析结果可以得知:部分电厂除尘器净烟室壁面或引风机轮毅表面发生的结晶物主要成分为氯化铵;烟气通过除尘器附近的温度区间时,其中的氯化铵大量沉积。